
IEEE SENSORS JOURNAL, VOL. 23, NO. 9, 1 MAY 2023 9871

A Motor Recovery Training and
Evaluation Method for the Upper Limb

Rehabilitation Robotic System
Huimin Cai , Student Member, IEEE, Shuxiang Guo , Fellow, IEEE,

Ziyi Yang, Student Member, IEEE, and Jian Guo , Member, IEEE

Abstract—Stroke can cause acute damage to blood
vessels in the brain, which often leads to hemiplegia and
imbalances in mobility. It is a challenge to develop a motor
recovery training and evaluation method with less help of
therapists. In this article, a motor recovery training and evalu-
ation method for the upper limb rehabilitation robotic system
is proposed. This system has two rehabilitation units, one is
active, and the other is passive. The developed rehabilitation
robotic system includes an exoskeleton rehabilitation robot
and PHANTOM1.5. The patients do rehabilitation training with
the help of a robot in the passive unit, and a virtual reality
game is designed in the active unit. Patients with mild motor
impairments observe the virtual reality game interface while
manipulating the PHANTOM to do rehabilitation training.
Three experiments are proposed in this paper. The fuzzy neural network (FNN), spring-damper model, and the method to
evaluate the training trajectory are designed and validated. The surface electromyography (sEMG) signals and grip force
during rehabilitation training are collected to set up an FNN and achieve evaluation. The accuracy of the network is 0.96
which is calculated in validation set. In Section IV, the rehabilitation evaluation method is compared with the state of art
on rehabilitation evaluation method. The method proposed in this article can reach high accuracy. It is easy to use and
understand for patients even without the help of therapists. The problem of lacking therapists can be solved to some
extent by the proposed upper limb rehabilitation system.

Index Terms— Force feedback, fuzzy neural network (FNN), motor recovery training and evaluation, upper limb
rehabilitation robotic system, virtual reality.
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I. INTRODUCTION

STROKE is a growing threat to the people all over the
world. Over 2 million poststroke patients in China have

difficulty taking care of themselves each year [1]. More than
half of poststroke patients are unable to live independently [2].

Although the damage in the brain cannot be healed
completely, patients can do rehabilitation exercises to stimulate
the recovery of damaged blood vessels and cells based
on “neuroplasticity” theory [3]. The traditional rehabilitation
training evaluation method relies on the experience of
therapists. Mostly, they use the Brunnstrom scale, the Fugl-
Meyer scale, the National Institutes of Health Stroke Scale,
and the modified Rankin Scale [4]. The Brunnstrom scale
was proposed by a Swedish therapist. It is based on the
analysis of the patients’ ability, coordination of synergistic
movements, and the synergy of flexors and extenders. The
Fugl-Meyer Assessment (FMA) is another widely used scale.
The FMA scale consists of five scales related to various
aspects of the upper and lower limbs of patients. The National
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Institutes of Health Stroke Scale is a score calculated from
11 components and is used to quantify the severity of
strokes. These 11 components are summed and the score
correlates with stroke severity. The modified Rankin scale
is used to classify levels of functional independence with
reference to prestroke activity. In general, the traditional
rehabilitation evaluation method is based on the scale in terms
of reflex response, synergy, balance, sensory function, and
pain.

These methods lack efficiency and can barely reflect subtle
progress. And the number of therapists can hardly keep up
with the demand. Recently, the problem has been improved to
some extent [5], [6]. The rehabilitation evaluation method is
carried out in recent studies. In 2016, Chen et al. [7] proposed
a wavelet-based method to analyze the local band spectral
entropy of the surface electromyography (sEMG) signals. The
research is helpful to describe the variation of joint angles.
Antonella et al. [8] proposed a multiparameter approach to
evaluate poststroke patients based on electroencephalogram
(EEG) signals, sEMG signals, and some scales. The author
compares the result with traditional scales, the trend agrees.
In 2022, Tamantini et al. [9] proposed a patient-tailored
control architecture for upper-limb robot-aided orthopedic
rehabilitation. The controller was capable of tracking the
planned path and managing a position error according
to the tuned stiffness parameters. However, the research
lacks sufficient rehabilitation evaluation methods. Recent
research still largely relies on the assistance of therapists.
In addition, EEG signals and sEMG signals vary from person
to person. These kinds of signals are unstable and easy
to be disturbed [10], [11], [12], [13]. It is a challenge to
develop a motor recovery training and evaluation method
without therapists. Periodic rehabilitation evaluation can help
to enhance patients’ confidence. In addition, patients can
adjust the rehabilitation plan to improve the efficiency of the
rehabilitation training, but the number of therapists is far from
enough [14], [15], [16], [17]. Early in 2002, many experiments
indicates that virtual reality exercises can improve the motor
skills of stroke patients [18]. Virtual reality shows great
potential in rehabilitation, especially with the development of
haptic feedback device [19]. In this article, a motor recovery
training and evaluation method is proposed for upper limb
rehabilitation robotic system which can work without the help
of therapists. It does not mean the whole rehabilitation process
does not require therapists. This research aims to design a
rehabilitation system that is easy to control and understand for
patients. So that therapists will be able to help more patients.

In general, there should be a new rehabilitation system.
First, it should be easy to use and understand for patients. And
there should be rehabilitation evaluation unit. So that therapists
would be able to help more patients. Second, it can be used
by patients in different injury levels. Third, the training should
be enjoyable and easy to adjust the difficulty.

The contribution of this article is shown as follows. First,
a novel home-based rehabilitation system is set up where
patients can do rehabilitation training and get evaluation
results without the help of therapists. Second, rehabilitation
training and evaluation are suitable for patients in different
injury levels. Third, the evaluation method is related to

Fig. 1. Overall block diagram of passive rehabilitation unit.

Fig. 2. Three-dimensional model of exoskeleton upper limb
rehabilitation robot.

the Brunnstrom scales, patients and therapists can easily
understand the current rehabilitation stage. And in active
rehabilitation unit, haptic device based on spring-damper
model can provide feedback force in VR games. It can make
the training more enjoyable and the difficulty can be adjusted
by changing the feedback force.

II. SYSTEM DESIGN

A. Rehabilitation Training Method
This system has two rehabilitation units, one is active, and

the other is passive. The passive rehabilitation unit is for
patients with severe motor impairment or in the early period of
rehabilitation. The active rehabilitation unit is for patients with
mild motor impairment or in the later period of rehabilitation.

The overall block diagram of passive rehabilitation unit is
shown in Fig. 1. The exoskeleton upper limb rehabilitation
robot drives the patient to perform rehabilitation exercises in
the passive rehabilitation unit. The structure of the exoskeleton
upper limb rehabilitation robot is based on the joints of
the human hand, with 2 degrees of freedom for the thumb
and 3 degrees of freedom for the remaining four fingers.
Fig. 2 shows the 3-D model of the rehabilitation robot. The
components of the passive unit are shown in Fig. 3. The
robot module consists of motor, driver, flex sensor, and power
converter. The passive unit of the developed rehabilitation
robotic system mainly contains the exoskeleton robot, sEMG
signals acquisition equipment, and grip force acquisition

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on May 02,2023 at 13:21:47 UTC from IEEE Xplore.  Restrictions apply. 



CAI et al.: MOTOR RECOVERY TRAINING AND EVALUATION METHOD 9873

Fig. 3. Components of the rehabilitation robot.

equipment. Patients will be guided by the rehabilitation robot
to do rehabilitation training. There will be PC interface for
patients to select the training mode or control the robot.
Information like time, training mode, username, and sEMG
signals will be saved. Grip force and sEMG signals will be
sent into fuzzy neural network (FNN) to evaluate patient’s
motor ability.

The length of the robot can be adjusted to suit different
persons. It is easy and comfortable to wear. The rehabilitation
training mainly includes internal and external rotation of the
wrist, internal and external rotation of the elbow, extension
and flexion of the elbow, and grip training.

The active unit of the developed rehabilitation robotic
system mainly uses PHANTOM Premium 1.5, which has
6 degrees of freedom. PHANTOM from 3-D systems company
is a haptic device that can fulfill the requirements of a
vast range of research and commercial applications. It is
widely used in the fields of rehabilitation [10], [12], [20].
PHANTOM can be programmed to move along the x-, y-,
and z-axes and generate feedback forces. The user can feel the
collision force, reaction force, and traction rotation during the
movement. The feedback force is generated by spring-damper
model. In this article, the patient controls the PHANTOM to
do VR games. A haptic device will provide feedback force
during the rehabilitation training. The block diagram of active
rehabilitation unit is shown in Fig. 4. VR rehabilitation game
can not only make the training more enjoyable but also easily
set different difficulties of VR games [18], [19]. The resolution
in rotation can reach 0.0023◦, 75 cm in the x-axis, 75 cm in the
y-axis, and 40 cm in the z-axis are the maximum displacement
distances. For patients with mild motor impairment who need
to enhance strength, this project develops a virtual reality
game. The patients do rehabilitation training by playing the
virtual reality game. Then, the rehabilitation evaluation method
is performed based on time, accuracy, and stability of the
trajectory. After the patient completes the VR game, the
trajectory can also reflect the rangehe can reach. Time and

TABLE I
LEVELS OF MOTOR ABILITY

stability of the trajectory are related to patient’s muscle
strength [10]. The complexity of the rehabilitation training
game and the strength required to complete the game can be
adjusted according to the patients’ injury levels.

The spring-damper model is widely used to calculate the
feedback force in the field of rehabilitation [20], [21]. Suppose
the surface of the virtual object has a series of springs and
dampers. When the patients manipulate the PHANTOM and
collide with the surface of the virtual object, the feedback force
is calculated according to Hooke’s law and Newton’s law of
viscosity.

In active rehabilitation unit, haptic devices based on spring-
damper model can provide feedback force in VR game. It can
make the training more enjoyable and the difficulty can be
adjusted by changing the feedback force. The spring is used
to simulate the mutual force when contacting the virtual
object surface. And the damper is used to simulate the energy
dissipation during the deformation of the spring, which makes
the model have some viscoelastic properties. The cursor of
the PHANTOM is considered a mass point. At any moment t ,
let the external force f (t) be the input and the displacement
x0(t) after contacting the virtual object surface be the output.
Assuming the viscous damping force generated by the damper
is fB(t) and the elastic force generated by the spring is fK (t).
Then, the equations of motion are established in (1)–(3), where
K is the spring stiffness, B is the viscous damping coefficient,
and m is the mass of the point.

When the mass is neglected and only springs and dampers
are considered, the equation is the first-order constant
coefficient differential equation

f (t) − fK (t) − fB (t) = m
d2x0 (t)

dt2 (1)

m
d2x0 (t)

dt2 + B
dx0 (t)

dt
+ K x0 (t) = f (t) (2)

B
dx0 (t)

dt
+ K x0 (t) = f (t) . (3)

The model of feedback force is established, and the
feedback force can be modified by changing K and B. The
tactile feel of the virtual surface can be adjusted to be hard
or elastic. The motor ability of patients can be calculated
from time, accuracy, and stability of the trajectory and other
parameters. Time, accuracy, and stability will each correspond
to a score, and the result will be determined by calculating the
sum of the scores.

B. Rehabilitation Evaluation Method
During the rehabilitation training, sEMG signals of the

biceps, triceps and brachioradialis muscles, and grip force will
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TABLE II
MOTOR ABILITY SCORE

TABLE III
TOTAL SCORE

be collected. The detail of filters and features is explained
in this part, and some picture of sEMG signals before and
after filter is shown in the experiment part. The motor skill
of the patient is divided into five levels. The training data
are obtained by simulating rehabilitation training according
to Table I, which is based on manual muscle testing (MMT)
scale [22].

Empirical mode decomposition (EMD) algorism is used to
do the denoising. Specifically, the signals are decomposed as
a superposition of the intrinsic mode function (IMF). In (4),
ri (t) is the residual component of the decomposition. Finally,
the components are reconstructed to obtain the preprocessed
sEMG signal

x (t) =

n∑
i=1

imfi (t) + rn (t) . (4)

After several experiments, from the previous study, the
following three features were selected to evaluate the sEMG
signals [23], [24].

The mean absolute value (MAV) reflects the fluctuation of
sEMG signal intensity with time. It also reflects the contraction
characteristics of the muscle. The MAV is calculated by

MAV =
1
N

N−1∑
i=0

|x (i)|. (5)

The variance (S) is often used to reflect the state of muscle
activity, and the variation of it is also related to the strength
of muscle contraction. The function of variance is calculated
by

S =

√
1

N − 1

∑N

j=1

(
xi j − xi

)2
. (6)

The mean power frequency (MPF) is selected as a feature
from the frequency domain [25]. The function of MPF is

MPF =

∫
∞

0 f p( f )d f∫
∞

0 p( f )d f
. (7)

During the rehabilitation, patients should try to do the grip
training on a tennis ball shown in Fig. 5. The equipment in
Fig. 6 is used to collect grip force. The curve in Fig. 7. shows
the data of a single grip and relaxation on a tennis ball.

Fig. 4. Block diagram of active rehabilitation unit.

Fig. 5. Grip training on a tennis ball.

Fig. 6. Grip force acquisition equipment.

FNN is a multilayered feed-forward network. It combines
the fuzzy system with the neural network. Entering sEMG and
grip force features to the input layer, and the output is the result
of rehabilitation evaluation. When a patient did rehabilitation
training completely passive, the sEMG signals will be very
weak. On the contrary, if a patient could actively participate in
the rehabilitation training, the sEMG signals will be different
from that of the former patient [26], [27], [28], [29].

The framework diagram of FNN is shown in Fig. 8. The
first layer is the input layer, x1 represents the sEMG signals
and x2 represents the grip force. The input layer contains the
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Fig. 7. Grip force signals.

Fig. 8. Framework diagram of FNN.

MAV, the variance, and the MPF of the sEMG signals as well
as the mean value and standard deviation of the grip force.

The second layer is the affiliation function layer to fuzzify
the input variables. Each input variable contains five fuzzy
sets, which are assumed to be set to Ai –Ei , and then the
output after fuzzification is A1–A5, B1–B5, C1–C5, D1–D5,
and E1–E5, they represent the probability of each fuzzy set,
respectively. The higher the value, the more likely x belongs
to that fuzzy set.

The third layer of the FNN is the fuzzy rule layer. The
number of nodes in this layer is the same as the number of
fuzzy rules, which is m × n. It is the strength release layer of
the rules, and each node in this layer is connected to only one
of the m nodes and one of the n nodes in the second layer.
This layer can be expressed as, with j , k, l, o, p = 1, 2,
3, 4, 5

O(3)
i = A j BkCl Do E p. (8)

The fourth layer is confidence layer. The number of nodes in
this layer also represents the division of the fuzzy degree in the
output layer. The connection between this layer and the third
layer is fully interconnected, assuming that the connection
weight is Wk j , with k = 1, 2, . . . , j = 1, 2, . . . , m × n,
i = 1, 2, . . . , 55. The confidence level is

O(4)
i = ωi = wi

/ 55∑
i=1

wi . (9)

The fifth layer is the defuzzification layer, a fixed node that
calculates the total output in (10), where i = 1, 2. This layer

Fig. 9. Average score of each level.

transforms the output of each node in the fourth layer into an
exact value

O(5)
i =

∑
ωi fi . (10)

The network is trained the same as the BP neural network,
the antecedent parameters are adjusted, and the affiliation
function is modified to achieve the best result. The final FNN
established in this project divides the signal strength into five
fuzzy sets from small to large: I = {Z , S, M , N , L}, and
the evaluation results into five fuzzy sets U = {ZO, SO, MO,
NO, LO}. The output of the network is a number between
0 and 4, representing five rehabilitation stage. The closer the
output is to an integer, the higher the confidence.

Another evaluation method only for the active rehabilitation
unit is designed. Combining the two methods can reach
evaluation in different aspects. This method is based on time,
feedback force, stability, and accuracy of the trajectory during
the virtual reality game. The score of each stage is shown
in Table II. Twenty healthy volunteers play the virtual reality
game; the time, stability, and feedback force are recorded as
the standard of healthy people. Average score of each level
is shown in Fig. 9. The scores were summed according to
Table III. Then divide the data into 5 stages to evaluate the
motor ability of the patients in different injury levels.

III. EXPERIMENT

Twenty volunteers were selected to do rehabilitation
training. First, wipe the skin surface with medical alcohol
and then stick surface electrodes on the biceps brachii, triceps
brachii, and brachioradialis. Each volunteer was required to
perform traditional rehabilitation movements including elbow
extension and flexion, wrist extension and flexion, and wrist
internal and external rotation [30]. The motor ability levels
are shown in Table I. Second, performed grip training and
acquired the force signals. Each group of training was
performed three times and then rested for 30 s. After one level,
rest for 30 min and then prepared for the next level [31], [32].
The relationship of each level in this paper is compared with
Brunnstorm scale in Table IV.

Figs. 10–12 show sEMG signals in different muscles.
All experiments were conducted within the experimental
requirements of the Institutional Review Board (IRB) in the
Faculty of Engineering Kagawa University (Ref. No. 01-011)
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Fig. 10. sEMG signals of bicipital muscles.

Fig. 11. sEMG signals of triceps brachii muscle.

Fig. 12. sEMG signals of brachioradialis.

Fig. 13. Comparison of sEMG signals before and after filtering.

The sEMG signals before and after denoising are shown in
Fig. 13. The sEMG signals and grip force are saved for the
training of FNN. The data will be split into training set and
validation set to train the network and calculate the accuracy.
The accuracy rate is 0.96. It is compared with the state of art on

TABLE IV
CHOICE OF REHABILITATION MODALITY

Fig. 14. Rehabilitation training operation interface. (a) Initial interface.
(b) In-training interface.

rehabilitation evaluation method in Table V. For patients with
mild motor impairment or in the later period of rehabilitation,
the active rehabilitation unit is designed. Patients will play
a virtual reality game for rehabilitation and evaluation. The
rehabilitation game is shown in Figs. 14 and 15. Randomly
generate serial points in 3-D space, with a red line to guide
the trajectory of the movement. The patients manipulate
PHANTOM to control the cursor move according to the path
and capture each node in turn. When the cursor is close to
the node, patients will feel the elasticity and need to apply
enough force to make the cursor coincide with the node. When
the cursor leaves, patients will feel the attraction. The force
can be adjusted to increase or decrease the difficulty of the
rehabilitation game. The white node is untouched, and the blue
node is the node which is already captured. When the cursor
coincides with the node, it will be green.

In this rehabilitation stage, patients already have basic motor
ability and need to enhance their strength. The virtual reality
game with feedback force can not only make the training more
enjoyable but also easily set different difficulties of VR games.
This game can meet the need for range of motion and strength
training. Completing one small goal after another through
continuous movement helps motivate patients to complete the
entire rehabilitation game [33].

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on May 02,2023 at 13:21:47 UTC from IEEE Xplore.  Restrictions apply. 



CAI et al.: MOTOR RECOVERY TRAINING AND EVALUATION METHOD 9877

Fig. 15. Doing the active rehabilitation training.

A photograph during the training is shown in Fig. 15. All
target nodes are within 225 dm3 of the PHANTOM’s end-
effector. The user manipulates the PHANTOM to move the
cursor for rehabilitation movement by continuously observing
the visual feedback provided by the computer. The collision
detection process and the feedback force thread will detect
whether the cursor touches the ball and then update the image
of the computer.

Although the game is displayed on the computer screen,
the game is not planar. The virtual ball is generated in 3-D
space within the range that the PHANTOM can reach, which
is 75 cm in the x-axis, 75 cm in the y-axis, and 40 cm in the
z-axis. The patient can drag the screen to rotate the
perspective. However, as the range is only 225 dm3, volunteers
can easily find the virtual ball and only observe the interface
with default angle. They can feel the hard surface of virtual
ball when the cursor is close to it. The process of finding the
ball is also a small challenge for the user.

The smoothness of the trajectory was analyzed by (11).
First, fit the discrete points into a curve. The coordinates in
3-D space are x , y, z, and time is t . The distance of two
destinations is s. The smoothness of the curve represents the
stability of the trajectory. We defined a smooth function (Smo)
which is calculated as (11)

Smo =

√
1
2

∫ (
d3x
dt3

)2

+

(
d3 y
dt3

)2

+

(
d3z
dt3

)2

dt
(

t5

s2

)
.

(11)

Table IV describes the relationship of each level in this
article to the Brunnstrom scale. It establishes a link between
the rehabilitation evaluation, classification, method in this
article, and the traditional rehabilitation evaluation method.
It is convenient for patients in each rehabilitation stage to
understand their rehabilitation status and what rehabilitation
exercises are most suitable for them.

The complete process of rehabilitation training and
evaluation is as follows. First, introduce the experimental
platform and environment to the patients. When they are
familiar with the environment and manipulation, the training
will begin. Second, figure out which mode should they
use based on Table IV, if they are in the early period of

Fig. 16. Verification experiments of surface stiffness and feedback
force.

rehabilitation, they need to do passive rehabilitation training.
And the active rehabilitation training is for those who
have mild motor impairment or are in the later period of
rehabilitation. In the passive rehabilitation training, patients
are guided by the robotic system. In the active rehabilitation
training, patients could see a spherical cursor and five white
virtual balls which are connected by red lines. Then, patients
move the PHANTOM, doing it as straight as possible along
the line, and overcome the repulsive force when it touches
the virtual balls. The virtual ball’s color will turn to green,
then overcome the attractive force and leave the virtual ball,
go for the next target. The ball turns from green to blue
after the cursor breaks away. When all the balls turn blue,
it means that the training is completed. Finally, the program
will automatically record the data and do the rehabilitation
evaluation.

IV. DISCUSSION

An experiment is set to inspect the result of spring-damper
model. Generate a virtual plane in 3-D space, the curve shown
in Fig. 16 means the trajectory and the color means the force.

In the experiment, smaller result of Smo indicates that the
patient has a better performance in trajectory and finishing
time. For example, the curve in Fig. 17 is the trajectory of a
smooth movement and a trembling movement. The result of
red curve from A to B is 459.64, and the result of green curve
from C to D is 889.98. That means the red curve is smoother
than the green curve, and it has a better performance during
the movement. Twenty volunteers simulated the rehabilitation,
according to Table IV. The average value was obtained to do
the rehabilitation evaluation.

By recording the feedback force, the results show that the
feedback force can meet the requirements. The results in
Fig. 18 also show that there is a linear relationship between
the curve of feedback force when moving one unit from the
plane and the feedback force curve when moving five units,
which is consistent with the model.

A comparison of the rehabilitation evaluation method with
the state of art on rehabilitation evaluation method is shown
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Fig. 17. Trajectory of a smooth movement and a trembling movement.
(a) Trajectory in 3-D space. (b) Projection of XOZ surface of the
trajectory.

Fig. 18. Data from verification experiments of rigidity and feedback
force models.

TABLE V
COMPARISON WITH THE STATE-OF-THE-ART

in Table V. Antonella et al. [8] proposed a multidomain
method analysis, including EEG, sEMG, kinematics, and
scales. The results show that quantitative description has the
same trend with traditional scales. However, it only shows
the trend and did not present a method to get rehabilitation
evaluation by these parameters. Wang et al. [34] present a

method to get rehabilitation evaluation with sEMG signals.
Two features were chosen in this method, and then the
author compares support vector machine (SVM) and back
propagation neural network (BPNN) as the model. The
accuracy rate is 0.87 and 0.90. However, only use sEMG
signals in the rehabilitation assessment is unstable. And
the method still largely relies on therapists. This research
combines grip force and sEMG signals to evaluate muscle
strength to achieve better rehabilitation evaluation.

A motor recovery training and evaluation system is
proposed in this article. Two training unit is provided so
that patients in different injury levels can use this training
system. The virtual reality game can enhance the interests
and motivation of patients. The evaluation method is based on
muscle strength and can work without therapists and achieve
high accuracy. So that therapists will be able to help more
patients.

V. CONCLUSION

A robotic system that consists of two rehabilitation units
is proposed in this article. The passive rehabilitation unit
includes signal acquisition, filtering, feature extraction, and
establishment of an FNN for rehabilitation evaluation. Finally,
the accuracy of the FNN is verified, and the accuracy rate
is 0.96. The active rehabilitation unit includes PHANTOM
and virtual reality rehabilitation games on a computer. The
active rehabilitation training unit combines virtual reality,
force feedback, collision detection, and other methods. Patients
manipulate PHANTOM to complete the rehabilitation training
according to the virtual reality game. Three experiments
are proposed in this article, the FNN, spring-damper model,
and the method to evaluate the trajectory are designed and
validated. The rehabilitation evaluation method is compared
with the state of art on rehabilitation evaluation method. The
method proposed in this article can reach high accuracy and
does not require the participation of a therapist. The upper
limb rehabilitation training and evaluation robotic system
designed in this article achieves the expected results. The
rehabilitation training and evaluation in robotic system has
a broad development prospect, it solves the problem of
insufficient rehabilitation physicists, and brings hope to more
patients.
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